
International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 622
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 Performance improvement of distributed key-
value store using van emde boas

Shreeya Deshpande,Varsha Jha, Affan Shaikh, Niket Doke, Aparna Mete-Sawant

Abstract— Distributed Key-Value store systems are relevant and of great benefits in almost all systems that aim at providing services to a considerably
large amount of audience which is quite spread out geographically. All major conglomerate firms are highly dependent on distributed key-value store and
even the slightest failure of the system could result in losses that are not only monetary in nature but are also in the form of highly sensitive information
that could alter the functioning of a great deal of highly sophisticated systems. So we might safely say that the slightest of deviation from the norm in the
functioning of distributed key-store value could result in grave consequences for all the stakeholders involved. One of the most straightforward
implementation of such a system could be by using a hash table to store all the key-value pairs. Such an implementation is obviously quite easy to use
and would also allow us to read/write key-value pairs in constant time but it also has an obvious downside. When we use a hash table we need to store
all the data available in memory which is quite difficult if the data is too big which is mostly the case. Instead of using a hash function this paper tries to
implement a concept called consistency hashing. Also instead of using plain vanilla consistency hashing this paper tries to implement a slightly modified
version that introduces some variation to tackle some of the drawbacks. This paper tries to minimize the trade-offs that are usually made in the development
of such systems thereby making it reliable, available and consistent at the same time. The parameters that the paper majorly focuses on are performance,
reliability and scalability of the system. The main question that arises before building such a system is how to distribute the data on multiple machines and
what is the most optimal method or strategy to partition the data. Sharding and the modified consistency hashing most fittingly answers these questions.
While scaling such a system a lot of other factors come into play like hardware support, replication requirements, indexing, read/write volume, query
pattern, size of value and complete data, caching, vector clocks, gossip protocols, repair strategies, etc. this paper attempts to tackle each of these factors
meticulously. However the main concern of this paper remains the latency or the response time of the system. It tries to minimize the latency without
compromising other trade-offs or factors involved.

Index Terms – Key-value, consistent hashing, replication, sharding, partitioning, load balancing, van-emde boas

1. INTRODUCTION

Any system that aims at providing services to a considerably
large amount of audience at its peak time would expect to
address a crowd of up to but not limited to about tens of
millions. To provide services to that amount of customers one
would require thousands of servers located globally. Any firm
addressing and providing services to a large crowd would
most obviously have a strict set of requirements as to on which
factors does it want to focus the most. The factors could be
performance, reliability, availability, efficiency, etc. To ensure
that the system is able to adapt the continuous and rapid
growth of the number of customers using it the system must
also be scalable in all its aspects. In this paper reliability and
availability are some of the factors that are majorly focused on
as even the slightest of the downtime of the system could have
grave consequences monetarily and also in terms of customers’
trust on the platform or system. Scalability is another factor
that this paper takes into consideration as there is no point in
having a system in place that cannot entertain and efficiently
handle growing number of customers on a regular basis. All
the factors mentioned above largely depend on how the state
of the platform or system is managed. This paper attempts to
implement a system that is highly dispersed i.e. decentralized
and is loosely coupled and can support multiple nodes and
services or operations. In today’s world there is a growing and
urgent need of technologies and platforms that are available
24x7. For example, the customer must be able to perform
operations and avail services even if the system is crashing or

failing, the networks are failing or the servers which are
geographically spread out are facing earthquakes or tornados
or tsunamis. For this to be possible the factors responsible to
manage the availability of the system must always be able to
read from and write to all the databases that are spread out
globally.
 Recovering from failure or crashing of a system that
comprises of multiple nodes and components is a precarious
and delicate situation. This paper tries to handle such situation
assuming that crashing or failing is the general mode of
operation of the system without giving it a separate
sophisticated mechanism. This paper tries to recover from
failure without affecting the performance and reliability of the
system and causing minimal effect on the functioning of the
system.
 This paper tries to propose the implementation of a highly
reliable, available and scalable distributed key-value store.The
proposed system is highly inspired by the already
implemented systems like Amazon’s Dynamo and LinkedIn’s
Project Voldemort. Such a system is used to efficiently handle
and manage the operations that have high reliability and
availability requirements. At the same time it tries to minimize
the trade-offs of not only between consistency and availability
but also between performance, cost effectiveness, efficiency,
speed and feasibility. To handle the disparate operations that
the systems offer today we need to have a storage mechanism
that is malleable enough to let the developer manage the
configuration of the overall distributed system based on the
trade-offs and the availability and performance parameter the
developer wants to achieve. Also the storage technology needs
to be feasible in terms of cost. This paper implements such a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 623
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

system by integration of a variety of well-known techniques
and tweaking parameters wherever needed, to fit the need of
the system of achieving high availability and performance
threshold. The data which is going to be stored is segregated
and cloned using a variation of consistency hashing which is
aided and expedited by the concept of versioning. The
consistency of data which is partitioned and replicated across
multiple nodes is maintained by a quorum based mechanism
and a special synchronization protocol that maintains
consistent replicas of the data in question. However the bottom
line of this paper is that the amalgamation and proper
synthesis of certain well-known techniques with a little
variation could result in the development of a system that
minimizes the compromises and trade-offs among the
important factors and achieves a highly available and efficient
system.

2. LITERATURE SURVEY

2.1 Related Work

In the paper [1] Giuseppe DeCandia et.al try to explain the
design of a distributed key-value storage which is non-
relational in nature created solely to handle and cater to the
services of the customers of Amazon. These services might
include list of best selling items on the website, management
of shopping carts, management of the session of a particular
customer, etc. The name of this system is Dynamo. Dynamo
has no single point of failure as its architecture which is quite
loosely coupled and dispersed in nature runs on top of a
network which is peer to peer structured. Every node in the
network is well aware of every other node present in the same
network. To provide availability, reliability and durability
Dynamo stores replica of a particular unit of data over multiple
nodes in the network. Each node present in the network has
the responsibility of the data falling in a particular key-range.
The node also called as the coordinator has a list of where and
how it would prefer to replicate the data and store it. Dynamo
is quite scalable and can at its peak time handle thousands of
nodes across multiple databases. On shortcoming of Dynamo
is that it highly compromises consistency of data across
multiple replicas to provide and ensure no downtime or
availability so that the users have good accessibility. The main
aim of Dynamo is to always make the readable/writable data
available so that the user request to read or write data is never
rejected even I the data centers are facing tornados,
earthquakes or tsunamis. This is what gives rise to
inconsistencies of data among multiple nodes. At a given time
it might be possible that the data corresponding to a particular
key might not be consistent or same across two different
replicas of the data. To handle this Dynamo uses a mechanism
in which the data across all the replicas are eventually made
consistent in the background by gradual tweaking. When the
user avails the update() function Dynamo does not overwrite

the existing data but instead uses a mechanism called data
versioning to store the previous copies of data. Dynamo uses
vector clocks to resolve the conflict between multiple versions
of the data with the same key. If any operation that the user
wants to perform fails or is not able to completely take place
and the coordinator fails to receive any acknowledgement then
there is no recovery operation in place to retransmit the
operation i.e. there is no timeout-retransmission discipline in
place.
In the paper [2] Roshan Sumbaly et.al tried to implement
another distributed key-value store called Voldemort which
was initially developed to cater the needs of LinkedIn users but
was later (in 2009) open sourced for any developer to use,
modify and implement in their own project. Project Voldemort
is highly driven by the concepts used in Dynamo. For example
like Dynamo its architecture runs on top of a network which is
peer to peer in nature. There is no master and each node is
equally responsible for any task that comes to the system. To
provide availability, reliability and durability Voldemort like
Dynamo stores replica of a particular unit of data over multiple
nodes in the network. For this purpose it uses consistent
hashing and partitions the data accordingly. As mentioned
above each node is quite independent and does not depend on
any other node for its functioning, there is no single point
failure. Voldemort has a layered architecture where each
logical layer has its own set of operations and responsibilities
to perform. Since it does not provide the ACID properties it is
not relational. Storage formats like MySQL and BerkeleyDB
are supported by Voldemort. Addition and removal of nodes
can take place in the Voldemort network without affecting the
normal functioning of the system. These changes are
automatically detected by the recovery mechanism of
Voldemort. Like Dynamo. Voldemort compromises
consistency for availability. Any inconsistency among data
replicas are solved in the background while the read operation
is taking place. This is called read repair. Sometimes read-
repair can be too expensive. At such times, a mechanism called
hinted handoff is used to resolve the conflict. Voldemort has
no timeout-retransmission discipline in place just like
Dynamo.

In the paper[3], Aimen Mukhtar et.al tried to implement
another NoSQL key-value data store called Riak which is
highly inspired by the concepts of Dynamo. Like Dynamo its
architecture runs on top of a network which is peer to peer in
nature. In Riak multiple users can update the data concurrently
at the same time and the conflicts in data versions are resolved
in the background by read repair. Riak also uses vector clocks
and hinted handoff to resolve the conflicts that arise due to the
concurrent writes. Riak has no single point of failure as its
architecture works in top of a ring topology. Riak makes sure
that either a success or a failure message is received by a node
requesting an operation i.e. it makes sure that
acknowledgement for every operation is received by the
requesting node hence there is a timeout-retransmission
discipline in place which kicks in anytime a failure occurs.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 624
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

In this paper [4], Avinash Lakshman tries to explain the
implementation of a column-oriented data store named
Cassandra. Cassandra was initially developed exclusively for
Facebook but was later open sourced in 2008. Cassandra is
designed to manage a large amount of data. It is fully dispersed
and implements a peer to peer ring topology. It integrates the
features of Google’s Big Table and Amazon’s Dynamo
providing excellent features to store data extensively in rows
and columns. In Cassandra the data which is to be stored is
partitioned both horizontally and vertically using consistent
hashing and also cloned over multiple nodes in the network to
perform load balancing. The ring topology of Cassandra uses
gossip protocols for communication between the nodes. The
purpose of such communication is to exchange messages about
the state of the application and also to alert all the nodes about
any kind of failure that may occur. This helps in the recovery
of the system after a failure. In Cassandra the client decides the
level of consistency to be maintained among the replicas of the
data. Cassandra does not fully provide all of the ACID
properties. Whenever a conflict occurs, the timestamp
mechanism is used to resolve it.
In this paper [5], Fay Chang et.al tried to explain the design of
Big Table which is another NoSQL data storage used in a
number of Google applications. Big Table maintains three
attributes for each of the key-value data pair in the database:
first a unique key keeps the name of the URL in reverse; second
a unique column that keeps the entire contents of the webpage
that the URL is pointing to and also some additional keys to
store references to the URL pointed web page; third is the
timestamp which denotes at what time the data was asked for
or referred to. All the three attributes are stored by the Big table
as strings. In Big Table, data is stored in a dictionary like
format. Column families in Big Table are groups of columns
that have data of same data type. This drastically reduces the
number of columns present in a table. Column families are
created before any data is stored. B+ trees are used to store
rows in Big Table. Big table has single point of failure since it
is highly dependent on GFS or master based architecture
which can become a bottleneck for some operations.

In this paper [6], Hiren Patel et.al tried to explain the
implementation of another NoSQL, column-oriented data
storage technology which is developed on top of the Hadoop
architecture named HBase. It is quite similar to Google’s Big
table with the added feature of being open source. HBase can
handle billions of data entries with millions of features. It uses
data storage mechanisms quite similar to Cassandra with the
exception that HDFS is used to store data. HBase has a quite
complex and elaborate master-slave architecture hence can
have single point of failure. The master is called HMaster and
the slaves are called region servers (RS). Similar to Cassandra
there are column families in HBase to significantly reduce the
number of columns. In case of a failure it is very hard to recover
for HBase hence it is not quite scalable. It has strong
mechanisms in place to manage consistencies. Also it has
timeout-retransmission discipline in place for receiving
acknowledgement

3. SYSTEM ARCHITECTURE
3.1. System Architecture

 Highly inspired from Voldemort, there are two
possible architectures: 3 tier and 2 tier. In the 3 tier architecture,
the client has no information about routing and forwards the
request to the load balancer which then forwards the request
to the backend. The backend has all the necessary routing
information (partition aware routing) and finally forwards the
request to the dedicated server. Thus, in a 3 tier architecture
every request needs 2 hops for execution which increases the
response time but, it also makes the client lighter and
independent of the keystore implementation.
On the other hand, in the 2 tier architecture, the client is aware
of the partition aware routing and forwards the request to the
dedicated server directly making it much faster. However, in
order to get the routing information the client needs to perform
bootstrapping
process and needs to keep in sync with the system. Both the
architecture are possible but for testing the system, 3 tier
architecture is used.

Figure 1 : System architecture : a) 3 tier Backend Routed b) 2 tier Client
Routed

3.2. Logical Architecture

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 625
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Figure 2 : Logical Architecture

The proposed architecture is a peer to peer architecture
consisting of symmetric nodes. Each of the nodes consists of
different logical modules responsible for different features.
Every node has routing information and information about
every other node in the system. The system supports storing
data in the form of key value form among different nodes. The
system can be configured using N (replication factor), W (write
count) and R (read count). N is the replication factor indicating
the number of nodes the data(key value pair) is to be
replicated. W (write count) indicates the number of node’s
responses the system blocks before declaring write successful.
R (read count) indicates the number of parallel gets before
declaring a successful get.
Elaborating the modules, at the top is client api, which can be
used for sending requests. The proposed system supports get,
put and delete operations. The client can or cannot have
routing information depending on the configuration. As it’s a
distributed system, it's inexorable to have data inconsistency.
There’s where the conflict resolution module comes into
picture which handles this inconsistency based on the setting.
The key value store returns all versions of data for a given key
to the client which can further apply filters like choosing the
one with the latest timestamp or taking union of them based
on the use case. The serialization module is responsible for
serializing the data before sending it through the network and
deserializing the received data from the request. The system
uses json for serialization and deserialization.
 The routing model is responsible for both partitioning
and balancing the load among the nodes, The routing is done
by a slightly modified version of consistent hashing with
different data structure. It also handles node addition and
deletions. There’s also a module for dealing with conflict
resolution called the read repair module. The failure detection
module looks for availability of nodes and shares the status
with everyone in the network. Finally, the storage engine is
used for storing the data in the form of a key value store. Any
database can be used here, the system uses Berkeley DB.
.

3.3. PARTITIONING

3.3.1. Consistent Hashing

 One of the most basic requirements of the proposed
system to be scalable is that it should be able to add or remove
nodes in the network and accordingly manage the distribution
of data over the new set of nodes and the entire process must
be dynamic. Consistent Hashing can be the solution to achieve
this task. In consistent hashing whichever hash function is
being used, its output range is treated as a circular ring which
is fixed. Due to the circular ring-like nature the largest output
value of the hash function is wrapped up and mapped to the
smallest hash value. Each node in the network is first given a
“name” which is a random string or value. This random value
decides the position of the node on the ring discussed above.
Then the data corresponding to each key is passed through the
hash function and the output value then decides on which
node the data will be stored. We do so by going around the
ring in clockwise direction and finding the first placed node on
the ring with position value larger than that yielded by the
hash function for the data. In this way each node on the ring is
only responsible for the data that falls in the region between
itself and the node before it. The primary advantage of
consistent hashing is that whenever a node is added or
removed from the network, only the node in the neighborhood
of the node in question are affected leaving the rest of the
network unaffected and intact. However, there are some
challenges that such an approach neglects. Firstly the
randomness in assigning positions to the nodes in the ring
causes unbalanced load distribution. Inorder to deal with
uneven load balancing virtual nodes are being added for each
node in the network. Secondly, this approach pays no attention
to the diverseness of the nature and performance threshold of
the various nodes in the network. To overcome some of these
challenges, this paper uses a modified version of consistent
hashing.

3.3.2. Consistent Hashing Implementation

Generally, Consistent hashing is implemented by using any
balanced key value tree structure. Hence, the operations like
finding a node associated with a key has a time complexity of
log N, where N is the number of entries in the structure
(number of nodes + number of virtual nodes). This time
complexity is still very good but can be improved by using a
data structure called Van Emde Boas Tree or VEB invented
Dutch computer scientist Peter van Emde Boas in 1975. It
supports insert, successor, predecessor and delete operations
in log log M. where M is range of key in the structure. In case
of consistent hashing, M can be the range of the hashing
function used. Hence, using a VEB tree can improve the time
complexity of finding node for a particular key exponentially.
Considering the output of the hash function is m bit number
then using a VEB tree time complexity will be log m (log 2m
is m) which is much lesser than log N. Moreover, the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 626
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

complexity is independent of the number of nodes and hence,
the system can scale better.

Figure 3 : Ring topology for number of nodes N = 4 and number of
partitions Q=8. A key whose hash falls in the range of partition will be

handled by node 3.

Moreover, normally the nodes are placed on the ring randomly
using the hashing function. However, in this implementation,
the ring is divided into Q equal partitions and these partitions
are then randomly distributed among the nodes N. So, each
node corresponds to Q/N partition. When a node is deleted,
the partition corresponding to that node are distributed among
the other nodes randomly. Similarly, whenever a new node is
added some of the partitions are chosen randomly from the
previous nodes and are given to the new node. Using this
technique ensure always equal load distribution among the
nodes.

3.4. Replication

To ensure that there is no down-time and the system is
available all the time, the data that is to be stored is replicated
across multiple nodes in the network. Each key-value pair is
replicated across N nodes where N is basically a parameter
decided by the developer. From each key-value pair the key k
is taken and is assigned to node called the coordinator. Each
coordinator is responsible to replicate the data objects that lie
within its range. Apart from storing all the data objects of the
keys that lie in its range locally, the coordinator also clones
these data objects and stores them at N-1 nodes that are located
after its position, clockwise on the ring-like structure of
consistent hashing. In this way each node on the ring is only
responsible for the data that falls in the region between itself
and the Nth node preceding it. The groups of nodes storing the
replica of any data object are individually called the
“preference list” for that particular key k whose data object
they are storing. Each node in the network has equal rights and
responsibility to decide that for a particular key which all

nodes should be present in the preference list. To handle
system failures the preference list may contain more than N
nodes for a particular key.

3.5. DATA VERSIONING

In case on any inconsistency among the replicas of data, the
conflict is resolved in the background asynchronously. There
may be a case where the user initiates a put() operation.
Concurrently another user might want to update some entries
using the put() operation. It may happen that some replicas of
the data might not be able to update the key-value pair and
hence a subsequent get() operation may not return the latest
key-value pair. If there is no failure than the eventual
consistency mechanism propagates the updates within a
given period of time but if a failure like system crash occurs
then the propagation of the update may be postponed
indefinitely. In order to deal with this situation, data
versioning is used. In data versioning, even if the data is
modified or updated, the older versions of the data are still
stored. Each version of the data is immutable and can be
retrieved whenever needed. Therefore, multiple data objects
of the same key value are present within the system. Many a
times, the newer version of a data object may absorb the
previous versions. At such times the system decides which
version has the authority to do so. But at the time of system
failure combined with concurrent requests to update a data
object, the client has to decide which version would subsume
which of the existing versions and which versions need to be
preserved. Merging of versions may also take place and also
the deleted versions may reappear. The key point here is that
system failure may result in more than two version of the
same data object. These replicas may later reconcile or
subsume each other. We need some sophisticated discipline
that acknowledges that there may be more than just two
version of a particular data object.
 Vector clocks are used to trace out the provenance of
connection between any versions of the same data object. A
vector clock is basically a numbered list of pairs of node and
counters. Each version of each data object has a vector clock
associated with it. By simply looking at the vector clock one
can determine whether two versions are on parallel branches
or are on some cause-effect branch. Consider two version of
the same data object. If the counters of the first version’s clock
are all either less than or equal to all the nodes part of the
second version’s clock then the first version is called the
ancestor and the second version is deleted. Otherwise there
needs to be some conflict resolution and subsuming of
versions. Whenever a client wants to update a data object it
needs to mention which version it want to update by giving
out the context in terms of the vector clock details. If the
system then has access to multiple branches that cannot be
logically subsumed or merged then it returns all the data
objects at the leaves with the corresponding versions and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 627
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

context in the form of vector clocks. Using this context the
divergent branches are then merged into a single version.

3.6 API

The proposed system stores the key-value pair based on a
quite simple and straightforward principle. It supports three
operations namely get(), put() and delete(). The put()
operation can also be used to update the data objects. The
get() function take the key as the parameter and returns the
value associated with the key. It is also possible that the get()
operation might return a list of data objects with different
versions that might be conflicting along with the context of
each version in terms of the respective vector clocks. The
put() operation takes the key, context and object as the
parameter and decides where the data corresponding to the
key is to be written and accordingly writes to each of the
replica nodes. The context is used to maintain the versioning.
The context is not quite visible to the caller of the operation. It
is internally used to resolve conflicts among the replicas of
the data object.

3.6.1. Data Model

The key store in the proposed system only supports string
data type for both keys and values. The following table
explains the data constraints.

TABLE 1
TABLE DESCRIBING THE TYPE OF DATA THAT CAN BE STORED IN THE

SYSTEM.

Feature Supported Data Type Size

Key String 512

Value String 1024

3.6.2. Execution

All the nodes in the network are capable of receiving get(),
put() and delete() requests from the client side. Here we are
assuming that the environment is failure-free. All the
operations supported by the system are invoked over HTTP.
The operation requested by the client can be carried out in two
ways. The first is whenever the request arrives, it is first
forwarded to a coordinator that tries to balance the load and
based on the information about load distribution in the
network assign a node in the network to carry out the
operation. In the second scenario the client itself is well aware
of the load distribution among the nodes and directly forwards
the request to the designated node. The advantage of the first
method is that no additional code is to be written to make the
client self-aware. On the other hand, the second approach may
result in less response time as a potential time-consuming step
of forwarding the request is eliminated. A node that is given

the responsibility of handling the read/write operations is
called the coordinator. If the node that will become the
coordinator is selected by the first approach mentioned above,
it will most probably be first in the preference list of the said
key consisting of top N nodes. If that is not the case, i.e. the
coordinator is not present in the preference list of the key, then
the present coordinator will relinquish the control and forward
the request of the said operation to one of the nodes that is
present in the preference list. Usually, the top N nodes in the
preference list are considered while deciding the coordinator.
However, in case of system crash or failure, the lower-lying
nodes in the preference list may also be considered to carry out
the requested operation.
 To resolve any conflicts arising due to inconsistencies among
replicas, the proposed system uses a quorum-based protocol
system to maintain consistency among data objects. This
protocol has two parameters R and W. R is the minimum
number of nodes that need to be read from in order for a
successful read operation. W is the minimum number of nodes
that need to be written to for a successful write operation. R
and W both are set such that R + W > N. Here the response
time of a get() operation is decided by the slowest R clones and
the response time of put() operation is decided by the slowest
of W clones. R and W both are hence usually kept less than N.
When a put() operation arrives, the system first generates a
local set of context consisting of the vector clock and a new
version of the said key. This version along with the context is
then sent to the top N reachable nodes in the network. If this
new version is successfully written on W-1 top nodes in the
network then we consider the put() operation to be
successfully executed. For a get() operation the coordinator
gathers all the versions of the data object corresponding to the
said key. It returns the result of the operation to the client after
receiving R responses from the network. If there are conflicting
multiple versions of the same data object then based on the
context i.e. vector clocks the versions are reconciled and then
returned to the client.

3.7. HANDLING FAILURE

Handling failure is quite important so that each node is aware
that which nodes in the system are currently down and the
node that is up does not try to communicate with a node which
is currently down. If a strict quorum-based protocol is used
then the system may not be handle even the simplest of the
failure. So to overcome this hinted handoff is used. While an
operation is requested by the client only the first N reachable
nodes are considered. These nodes need not necessarily be the
top N nodes while going round the ring of consistent hashing.
For example, consider a situation where a data object is to be
written on node A. But due to some reasons the node A is
currently down. Using the hinted handoff discipline the
system writes the data object on another node which is
currently up. Let this node be B. Node B stores the information
that the data object written to it was intended to be written on

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 628
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

node A. Once the node A is up again, the data object is copied
from B to A and node B deletes the data object from its
memory. This ensures that the system is available all the time,
even in the case of a system failure. To ensure that the system
accepts a write operation at all costs as long as there is at least
a single node present to write the data object to itself the
developer can set W to 1. However, to maintain a higher
durability level it is better to set the value of W a bit higher.

3.8. MEMBERSHIP AND FAILURE DETECTION

3.8.1. Ring Membership

The down time of any node due to system failure is usually
ephemeral but may sometimes last for a long period of time. A
node being down for a while does not imply that the node has
permanently departed from the system neither does addition
of a node to the network due to some manual error form the
client side imply that the node has been permanently added to
the system. Hence in such situations, the load must not be
completely re-structured. To handle this, the proposed system
has a separate sophisticated mechanism in place to add or
remove a node from the network. The admin of the system uses
a command line tool to make a node at random in-charge of
issuing a membership change while adding or removing a
node from the network. This membership change issuing node
stores the changes and the time of change in a perpetual store.
These changes together form a history. This is because the
nodes are continuously being added and removed from the
network. All the nodes in the network continuously keep
communicating with each other and hence they use a gossip-
based protocol to keep the membership changes intact and
consistent. The nodes communicate with each other and
eventually keep their membership changes histories
consistent. The details regarding partitioning and load
balancing is also propagated using the gossip protocols.

3.8.2. External Discovery

The mechanism discussed above for adding or removing a
node to the network may lead to a logically partitioned
network where the nodes are not aware of each other’s
presence. For example, if admin adds a node A in the ring of
the network. At the same time admin adds another node B to
the ring of the network. Neither of them would be aware of
each other’s presence for quite some time. This would result in
logical partitioning of the network. To handle this the concept
of coordinator nodes are used. These coordinator nodes are
nodes in the network whose presence is known to all at all
times. Any node being added to the network eventually
merges its membership with these coordinator nodes. These
coordinator nodes like any other node in the network can
perform all the operations offered by the system. These
coordinator nodes are different from the coordinators that

decide the replication factor of a data object as discussed in
above sections.

3.8.3. Failure Detection

The proposed system handles failure so that each node is
aware that which nodes in the system are currently down and
the node that is up does not try to communicate with a node
which is currently down. For example, a node A considers its
peer node B to be down or failed if node b is not able to respond
to node A’s messages in a stipulated period of time. The node
A then uses alternate nodes in the network that are capable of
together performing the operations that node B could perform
alone. Meanwhile, node A also continues to check whether
node B is up and running again or is still down by sending
node B messages. Initially, gossip protocols were used by the
system to maintain a global state which is consistent of all the
failed nodes. But later it was observed that this maintenance of
a globally consistent list is not really necessary. This is because
since the nodes continuously join and remove the network, by
gossip protocols all the nodes are made self-aware of the state
of the entire system. There is no need of explicitly
acknowledging the failure of a node by making a list. Another
way of detecting failure is by Phi Accrual Failure Detection
Mechanism. In this method, we don’t have a binary answer as
to whether a node is down or is up and working. Instead we
get a suspicion value of whether the node is down or not. This
suspicion value is expressed as φ. This φ is described on a scale
which can be adjusted dynamically according to the load
distribution on the nodes being monitored for failure
detection. The basic idea is that we first set a threshold for φ.
Then we suspect a node say node B. Now if φ=1 then the
probability of us making a mistake in the suspicion of the node
B is 10%. Similarly the probability of making a mistake is 1% if
φ=2, 0.1% if φ=3, and so on. Each node in the network
maintains the time interval of receiving messages in the
operation of gossip protocols. These intervals are considered
while calculating φ. This method works well for Exponential
Distribution for approximation purposes. Also this method is
quite efficient, fast and accurate considering the load on the
nodes on the network.

4. EXPERIMENTATION AND EVALUATION

This section briefs about the response time and other latency
measurements of a prototype implementation of the proposed
system. The evaluation metrics that are proposed in the
implementation of the said system answers the following
questions: -
Is the system infinitely scalable?
What is the response time for get () operation and does it
reduce with the addition of new nodes?
What is the response time for put () operation and does it
reduce with the addition of new nodes?

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 629
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Is the system continuously available in a given interval of time?
At its peak time, how many requests can the system handle?
At its peak time, how many requests can the system
successfully complete?

After the implementation of the prototype of the system it was
found out that the system is significantly reliable and available
(almost 99.98% of the time). Also, the requests for operations
were successfully completed (almost 99.997% of the time)
without any major glitches and no data was lost due to any
error or failure of the system. Also the response time
significantly reduces (by almost 20%) by adding a new node to
the system which makes it infinitely scalable.

 5. RESULTS AND ANALYSIS

This section explains the results obtained and also the analysis
performed on these results. The system was tested with 3, 6
and 9 servers respectively. The servers were loaded with 150
clients simultaneously. A threshold(T) indicating the
maximum response time is obtained for each specific case. It is
guaranteed that the system does not cross this threshold for
any number of clients.

Number of Servers Response Time

Threshold for Put

(Rp) in ms

Response Time

Threshold for Get

(Rg)

3 4858.33 2533.35

6 4912.72 3776.47

9 4812.87 2485.52

Table 2 : Number of servers vs Threshold for Put(Rp) and Get(Rg)

respectively.

From table 2. the system guarantees that for 3 servers. the put
request won’t ever cross 4858.33 ms and the get request won’t
ever cross 2533.35 ms, for 6 servers. the put request won’t ever
cross 4912.33 ms and the get request won’t ever cross 3766.47
ms and for 9 servers. the put request won’t ever cross 4812.87
ms and the get request won’t ever cross 2485.52 ms.

 Figure 4. 3 Servers (Get Response time vs Number of clients)

 Figure 5. 3 Servers (Put Response time vs Number of clients)

 Figure 6. 6 Servers (Get Response time vs Number of clients)

 Figure 7. 6 Servers (Put Response time vs Number of clients)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 630
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 Figure 8. 9 Servers (Get Response time vs Number of clients)

 Figure 9. 9 Servers (Put Response time vs Number of clients)

In all of the above experiments the load on the servers are
gradually increased by simultaneous loading. The
simultaneous loads are initially started from 15 clients and
taken all the way up-to 140 clients. As the number of clients are
increasing the response time increases for put operation.
Similar to this for the get operation also the response time
increases. For both the operations the response time has a
specific threshold as discussed in Table 2.

6. CONCLUSION

This paper described the design and implementation of a
distributed key-value store which is highly available, scalable
and durable. The system was successful in achieving the
desired levels of performance and was able to handle all types
of failures and system crashes and all types of partitions. The
proposed system’s latency decreases with increase in the
number of nodes in the network and hence it is infinitely
scalable. According to the users’ need, the system can be scaled
down or up. By tweaking the parameters N, R and W the
desired levels of scalability, performance and availability can
be met.

 7. FUTURE SCOPE

In the proposed system many decentralized techniques are
used. All these techniques can be integrated with the
appropriate parameters and can be used to make a single

highly reliable and available system. A way to reduce the inter-
node communication latency is to extract a single data object
from HDFS and then propagate it among other nodes in the
network. Also Hadoop could be used to build techniques to
increase the speed of the lookup process.

8. REFERENCES

[1] Giuseppe DeCandia et al. "Dynamo: Amazon’s Highly Available Key-

value Store", 2007.

[2] Manjula Suresh et al. "Serving Large-scale Batch Computed Data with

Project Voldemort", 2009

[3] Aimen Mukhta et al. "Evaluating Riak Key Value Cluster for Big Data"

2020

[4] Avinash Lakshman et al. "Cassandra - A Decentralized Structured

Storage System", 2009

[5] Fay Chang et al. " Bigtable: A Distributed Storage System for Structured

Data",2006

[6] Hiren Patel et al. " HBase: A NoSQL Database " 2017

[7] Yasin Celik “A Study on Scalability of Distributed Key-Value Pair

Systems”,2016.

[8] Tuncay Bayrak, “Performance Metrics for disaster Monitoring

Systems”

[9] P.Basu, W.Ke and T.D.C Little,”Metrics for Performance Evaluation of

Distributed Application Execution in Ubiquitous Computing

Environments”

[10] Lada Adamic and Bernardo Huberman. Zipf’s law and the Internet.

Glottometrics, 3:143–150, 2002

 [11] Antonio Barbuzzi, Pietro Michiardi, Ernst Biersack, and Gennaro

Boggia. Parallel Bulk Insertion for Large-scale Analytics

Applications. In Proceedings of the 4th International Workshop on

Large Scale Distributed Systems and Middleware (LADIS ’10), pages

27–31, New York, NY, USA, 2010.

 [12] Balaraja Subbiah, “Lamport Clock and Vector Clock” at

https://medium.com/@balrajasubbiah/lamport-clocks-and-vector-

clocks-b713db1890d7

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson Hsieh, Deborah

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert

Gruber. Bigtable: A Distributed Storage System for Structured Data.

In Proceedings of the 7th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’06), Berkeley, CA, USA, 2006

[14] Brian Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam

Silberstein, Philip Bohannon, HansArno Jacobsen, Nick Puz, Daniel

Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s Hosted Data Serving

Platform. Proceedings of the VLDB Endowment, 1:1277–1288, August

2008.

[15] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.

In Proceedings of the 1st ACM Symposium on Cloud Computing

(SoCC ’10), pages 143–154, New York, NY, USA, 2010

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. In Proceedings of the 6th Conference on

Symposium on Operating Systems Design & Implementation –

Volume 6 (OSDI ’04), Berkeley, CA, USA, 2004.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 631
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:

Amazon’s Highly Available Key-Value Store. SIGOPS Operating

Systems Review, 41:205–220, October 2007.

[18] M. Dowell and P. Jarratt. The Pegasus method for computing the root

of an equation. BIT Numerical Mathematics, 12:503–508, 1972.

[19] Lars George. HBase: The Definitive Guide. O’Reilly Media, 2011.

[20] Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos, and

Nectarios Koziris. Distributed Indexing of Web Scale Datasets for the

Cloud. In Proceedings of the 2010 Workshop on Massive Data

Analytics on the Cloud (MDAC ’10), pages 1:1–1:6, New York, NY,

USA, 2010.

Ms. Shreeya Deshpande (Research Scholar)

 She is a student of BTech in Information Technology from Vishwakarma
Institute of Technology. She has completed an internship at Nvidia as a
System Software Engineering Intern. Her interests include Artificial
Intelligence, Deep Learning, Machine Learning and Distributed Systems.

 Ms. Varsha Jha (Research Scholar)
She is a student of BTech in Information Technology from Vishwakarma
Institute of Technology. She has completed an in-house internship at
Vishwakarma Institute of Technology in Internet of Things and has also
done a semester long internship at Symantec. Her interests are Blockchain,
Internet of Things and Machine Learning. She has published papers in the
area of IoT and Blockchain

 Mr. Affan Shaikh (Research Scholar)

He is a student of BTech in Information Technology from Vishwakarma
Institute of Technology. He has completed an internship at Credit Suisse.
His interests include Natural Language Processing, Machine Learning and
Distributed Systems

 Mr. Niket Subhash Doke (Research Scholar)
He is a student of BTech in Information Technology from Vishwakarma
Institute of Technology. He has completed an internship at Chainworks
Digital LLP as Associative Blockchain System Engineer. His interests
include Blockchain, Machine Learning and Distributed Systems. He has
published paper in the field of ML and Blockchain

 Mrs. Aparna Mete-Sawant (Faculty)
She is working as Assistant Professor in Information Technology from
Vishwakarma Institute of Technology. Her interests include Operating
Systems,Distributed Systems and Web Technologies.
.

IJSER

http://www.ijser.org/

